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Parameter Choices for a Muon Recirculating Linear Accelerator from 5 to 63 GeV
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A recirculating linear accelerator (RLA) has been proposed to accelerate muons from 5 to 63 GeV for a muon

collider. It should be usable both for a Higgs factory and as a stage for a higher energy collider. I first compute
constraints on the design due to beam loading. I next find an expression for the longitudinal emittance growth to
lowest order in the longitudinal emittance. I then describe a simplified model for the arcs and find an approximate
expression for the time of flight dependence on energy in those arcs. I finally use these results to estimate the
parameters required for the RLA arcs and the linac phase.

TABLE I. Beam and machine parameters [1].
Particles per bunch 2 × 1012 4 × 1012 2 × 1012

Longitudinal emittance (mm) 1.0 1.5 70
Transverse emittance (�m) 400 200 25
Initial total energy (GeV) 5 5 5
Final total energy (GeV) 63 63 63
Maximum emittance growth (%) 10
Maximum decay loss (%) 11.0
Physical aperture (�) 4.5

TABLE II. Assumed cavity parameters. 650 MHz values and input
power based on [2], 1300 MHz values are based on achieved values,
as shown in [3]. Cells per cavity at 325 MHz is based on the LEP2
cavities [4].
Frequency (MHz) 325 650 975 1300
Gradient (MV/m) 20 25 30 35
Maximum cells per cavity 4 5 7 9
Additional length at each end (cells) 1.5
Maximum input power per cavity (MW) 1.2

I. MACHINE PARAMETERS AND GOALS

I am describing the design of a dogbone geometry [5] recir-
culating linear accelerator (RLA) that will accelerate a muon
beam to 63 GeV. It will accelerate for two phases of a Higgs
factory, starting with a 5 GeV beam. It will also be re-used for
a higher energy collider with substantially larger longitudinal
emittance.

The relevant machine parameters and requirements are
given in Table I. RF cavity parameters are given in Table II.
Requirements on maximum longitudinal emittance growth are
based on the energy acceptance of the collider ring [6] in rela-

∗ jsberg@bnl.gov; http://pubweb.bnl.gov/~jsberg/
† This manuscript has been authored by employees of Brookhaven Science
Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S.
Department of Energy. The United States Government retains a non-
exclusive, paid-up, irrevocable, world-wide license to publish or reproduce
the published form of this manuscript, or allow others to do so, for United
States Government purposes.

TABLE III. (R∕Q)∕nC for various cavity design.
Design (R∕Q)∕nC (Ω)
Study II, 201.25 MHz, 300 mm aperture [7] 129
Study II, 201.25 MHz, 460 mm aperture [7] 104
SPL, 704 MHz [2] 114
ILC, 1300 MHz [8] 115

tion to the RMS energy spread and bunch length for a 70 mm
longitudinal emittance, assuming we want to keep 3�, and ap-
proximately distributing the allowed growth through the accel-
eration chain. Transverse emittance growth is limited to the
same value. The physical aperture is chosen to keep loss from
truncation of a 6-D Gaussian ellipsoid in phase space below
1%.

II. BEAM LOADING

The stored energy in a cavity with RF frequency!∕(2�) and
where the peak energy gain of a particle with charge q is qV
is

V 2

!(R∕Q)
(1)

whereR∕Q is a parameter related only to the cavity shape (and
is indepenent of RF frequency if all the cavity dimensions are
scaled inversely with the RF frequency), and is approximately
proportional to the number of cells in the cavity.
The energy lost from the cavity when a particle passes

through with a phase � (with zero being the crest) is
eNV cos�, whereN is the number of particles in the bunch.
In the RLA, we make n passes through the linac with N

particles of each signs. Assuming we have the same RF phase
on each pass, the fractional reduction in the cavity voltage by
the end of the acceleration cycle is cycle is

ΔV
V

=
enN!(R∕Q) cos�

V
(2)

The RF gradientG is defined such that V = nCG�c∕!, where
nC is the number of cavity cells. Then the fractional reduction
in the cavity voltage is

ΔV
V

=
enN!2[(R∕Q)∕nC ] cos�

�Gc
(3)
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TABLE IV. Fractional voltage reduction, computed for � = 0.
Particles 2 × 1012 4 × 1012 2 × 1012 4 × 1012

Frequency 325 MHz 325 MHz 650 MHz 650 MHz
Passes Relative reduction (%)
3 2 5 8 16
5 4 8 13 26
7 6 11 18 36
9 7 15 23 47

The geometric parameter (R∕Q)∕nC for several existing cavi-
ties is given in Table III. I will use 114Ω in subsequent calcu-
lations, since it is an intermediate value amongst these designs.
Table IV gives ΔV ∕V for varous numbers of passes.

The fractional recution in the stored energy is just
ΔU
U

= 2ΔV
V

−
(ΔV
V

)2 (4)
To compensate for beam loading, the installed voltage must be
increased by a factor of

1

1 − 1
2
ΔV
V

(5)

Based on empirical observations, I find that one can extract
about 50% of the stored energy in a cavity and still have reason-
ably stable operation. Thus, for 4 × 1012 particles per charge,
9 passes for 325 MHz RF and 3 passes for 650 MHz are safe.
5 passes at 650 MHz meets the criterion, but just barely. More
than 9 passes in a dogbone RLA will likely produce severe
difficulties with the switchyard.

Comparing a 9-pass 325 MHz RLA to a 3-pass 650 MHz
RLA, the linac costs are similar, assuming the linac per unit
energy gain cost goes as the inverse square of the RF fre-
quency. The arc costs for the 9-pass case should be around
four times higher when compared to the 3-pass case. Thus,
the 3-pass, 650 MHz RLA should be less expansive than the
9-pass 325 MHz RLA.

In a dogbone RLA, the bunches of different signs follow
each other down the linac. Thus, one charge will gain less en-
ergy than the other charge, if both charges come through at the
same phase. For the case of 4 × 1012 muons per bunch and
650 MHz RF, that difference will be about 2.6%. To compen-
sate, the later bunch could be accelerated at a different phase
than the earlier one.

From the point of view or beam dynamics and collective
effects, it is probably preferable to use a racetrack geometry
rather than a dogbone. Not only are both signs treated equally,
but the synchrotron phase advance is distributed more evenly
(and one may have the opportunity to increase the synchrotron
phase advance). However, this will increase the number of
beamlines for a given number of linac passes. At 650 MHz,
for instance, three passes through a dogbone RLA linac would
require switchyards with four beamlines at each end (includ-
ing injection/extraction lines), two pairs going in opposite di-
rections. For a racetrack geometry, a solution with four linac

TABLE V. Droplet structure
Cells Angle Length

2 −�m∕2 Lm
no −� L
2 0 L
ni � L
2 0 L
no −� L
2 −�m∕2 Lm

passes through one linac and three through the other would
give four beamlines at each end, but they are all heading in the
same direction, so from the point of view of magnet density,
one has essentially twice the beamline density as the dogbone
solution. Nonetheless, I will only deal with the dogbone ge-
ometry for the remainder of this paper.

III. DROPLET ARC DESIGN I

To study the longitudinal dynamics, it is helpful to have an
approximate design for the droplet arcs in the dogbone RLA.
Based on the design in [9], the droplet arc will have the fol-
lowing structure:

• Matching cells, which match zero dispersion at the linac
to the dispersion in the outward bending cells. There are
two of these cells.

• Outward bending cells.
• Dispersion flip cells, which flip the dispersion from
the outward bending cells to the inward bending cells.
There are two such cells.

• Inward bending cells.
• Dispersion flip cells (2).
• Outward bending cells.
• Matching cells (2).

All cells have a 90◦ betatron phase advance. Except for the
matching cells, all the cells have the same length L. The in-
ward and outward bending cells have bending angles of the
same magnitude, �. The matching cells have a length close to
L, and a bending angle close to �∕2. The dispersion flip cells
do not bend. Table V summarizes these parameters.
In a small angle approximation, dispersion matching re-

quires that
L� = Lm�m. (6)

Geometric constraints lead to the equations
(ni − 2no)� − 2�m = � (7)
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2Lm�(1 − cos �m) + L�m[cos �m − cos(no� + �m)]
+ 2L��m sin(no� + �m) = L�m sin(ni�∕2) (8)

Defining r = �m∕� = L∕Lm, the above equations give a
single equation. Ignoring the constraint that ni must be an in-
teger, we can write
(2−r2) cos(r�)+2r2 cos[(no+r)�]−2r2� sin[(no+r)�] = 2(9)

There are two free variables for a given no: r and �. My first
step is to set r = 1 and solve this equation for �. The equation
that I solve is therefore
f (�) = cos �+2 cos[(no+1)�]−2� sin[(no+1)�]−2 = 0 (10)

For Newton’s method, we would like to have the derivative of
f ,
f ′(�) = − sin � − 2(no + 2) sin[(no + 1)�]

− 2�(no + 1) cos[(no + 1)�] (11)
For small angles,

f (�) ≈ 1 − �2(n2o + 4no + 7∕2) (12)
and therefore an initial guess for � is

� ≈ (n2o + 4no + 7∕2)
−1∕2 (13)

Starting with this value for �, compute ni:
ni = �∕� + 2(no + 1) (14)

The interesting result is that ni is very close to being 5no + 8.I set ni = 5no + 8. Then
� = �

3no + 8 − 2r
(15)

Then we have to solve

g(r) = (2 − r2) cos �r
3no + 8 − 2r

+ 2r2 cos
�(no + r)
3no + 8 − 2r

− 2r2�
3no + 8 − 2r

sin
�(no + r)
3no + 8 − 2r

− 2 = 0 (16)
for r. The derivative of g(r) is
g′(r) = −2r cos �r

3no + 8 − 2r

−
�(2 − r2)(3no + 8)
(3no + 8 − 2r)2

sin �r
3no + 8 − 2r

+ 4r cos
�(no + r)
3no + 8 − 2r

−
2�r2(5no + 8)
(3no + 8 − 2r)2

sin
�(no + r)
3no + 8 − 2r

−
4�r(3no + 8 − r)
(3no + 8 − 2r)2

sin
�(no + r)
3no + 8 − 2r

−
2�2r2(5no + 8)
(3no + 8 − 2r)3

cos
�(no + r)
3no + 8 − 2r

(17)

The solution to g(r) = 0 is well approximated by

r = 1 + 1
5

(

�
3no + 6

)2
+ O

[

(

�
3no + 6

)3
]

. (18)

Even for no = 0, the difference of r from 1 is around 0.05, and
that difference decreases quickly as no increases.

IV. LONGITUDINAL DYNAMICS

A. Droplet Arc

I will model the arcs as having a linear time dependence
on energy, T0 + T1Δ, where Δ is the difference of the energy
from some reference energy. In addition to the approximations
I describe above, I make the following approximations:

• I use thin lens quadrupoles.
• The spaces between quadrupoles are dipoles.
• Bend angles are small.
• I ignore focusing from the dipoles.

The resulting time depencence on energy for the full arc is
given by

T1 =
7E2[Lm�2m + L�

2(2no + ni)]
16c4p3

−
m2[4Lm + (4 + 2no + ni)L]

p3
(19)

For an average dipole field B, we have that L = p�∕(qB), and
thus

T1 =
7E2[�3m + �

3(2no + ni)]
16qBc4p2

−
m2[4�m + (4 + 2no + ni)�]

qBp2
(20)

For highly relativistic particles, this is

T1 =
7[�3m + �

3(2no + ni)]
16qBc2

(21)

From the above calculations, a good estimates for � and �mare
�m ≈ � ≈

�
3(no + 2)

(22)

Then my final approximation for T1 is

T1 ≈
7�2(7no + 9)L
144(no + 2)2pc2

≈
7�3(7no + 9)

432(no + 2)3qBc2
(23)
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B. Nonlinear Dynamics

In my model, the time of flight depends linear on energy as
above. The RF contribution is treated as a single kick. All
arcs will have the same T1, which can be achieved by scaling
all the lengths linearly in the arc design momentum. Using the
notation from [10], the map can be written as

e−∶H20∶e−∶Hn0∶ (24)
where

e−∶H20∶ = e∶T1Δ
2∕4∶e∶(V ! sin�)�

2∕2∶e∶T1Δ
2∕4∶ (25)

e−∶Hn0∶ = e−∶T1Δ
2∕4∶e−∶HRF ,n∶e∶T1Δ

2∕4∶ (26)
and
HRF ,n =

V
!
sin(!�+�)−V

!
sin�−V � cos�+1

2
(V ! sin�)�2

(27)
I will estimate the emittance growth arising from the

nonnlinear portion of the Hamiltonian. The incoming distri-
bution is matched to the linear part of the Hamiltonian. Define
a linear transformation matrix A2 such that if

[

Δ
�

]

= A2

[

q
p

]

, (28)

then the map in these transformed coordinates is
e−�∶q

2
1+p

2
1∶∕2e−∶Hn1∶ (29)

The distribution function for the incoming distribution will de-
pend only on J1 = (q21 + p

2
1)∕2. We can approximately nor-

malize the full nonlinear Hamiltonian to find phase space co-
ordinates (q2, p2) such that J2 = (q22 + p22)∕2 is approximately
constant. The emittance that the beamwill eventually filament
to is the expectation value of J2 for the incoming distribution.

I approximate the nonlinear transformation from (q1, p1) to
(q2, p2) by

e∶A3∶e∶A4∶, (30)
where Ak is a homogeneous polynomial of order k. In fact, it
is only necessary to comptue A3, since A4 will not contributeto the emittance growth (though the calculation will require
computing fourth order terms). If A3 is

A30q
3 + A31q2p + A32qp2 + A33p3, (31)

then the emittance growth, assuming complete filamentation,
is

[27
4
(A230 + A

2
33) +

15
4
(A231 + A

2
32)

− 9
2
(A31A33 + A30A32)

]

⟨J 2⟩ (32)
For a uniform phase space density (waterbag) distribution,
⟨J 2⟩ = 4�2∕3; for a Gaussian distribution, ⟨J 2⟩ = 2�2.

For our system, the phase advance � is given by the equation
2 sin

�
2
= −

√

T1V ! sin� (33)
and the transformation matrix A2 is

⎡

⎢

⎢

⎢

⎣

√

V ! sin�
T1

sec
�
2

0

0
√

T1
V ! sin�

cos
�
2

⎤

⎥

⎥

⎥

⎦

(34)

I write

Hn0 =
∞
∑

k=3
Hk0 (35)

whereHk0 is a homogeneous polynomial in � andΔ of degree
k. The only term I will need isH30, which is

H30 = −
1
6
(V !2 cos�)�3 (36)

Similarly, I write

Hn1 =
∞
∑

k=3
Hk1, (37)

and

H31 = −
1
6
V !2

(

T1
2

)3∕2
cos�

(

p cot1∕2
−�
2
− q tan1∕2

−�
2

)3 (38)
The A3 that generates the transformation from a new set of
phase space variables (q2, p2) to (q1, p1) can be found by solv-ing the equation

[A3,H21] +H31 = 0. (39)
The result is

A3 =
1
6
V !2

�

(

T1
2

)3∕2
cos�

[

q3
(2
3
cot3∕2

−�
2
− cot1∕2

−�
2

)

+ q2p tan3∕2
−�
2

+ qp2 cot3∕2
−�
2
+ p3

(2
3
tan3∕2

−�
2
− tan1∕2

−�
2

)

]

(40)

The emittance growth is therefore

Δ� = 5
48
V 2!4T 31 cos

2 �

�2 sin3 �
⟨J 2⟩ (41)

We desire a particular energy gain per linac pass, which I will
call U = V cos�. Therefore the emittance growth can be
rewritten as

Δ� = − 5
48
U2!4T 31
�2 sin3 �

⟨J 2⟩ (42)
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TABLE VI. Parameters required to limit longitudinal emittance
growth.
� (mm) 1.5 1.5 70 70
!∕2� (MHz) 325 650 325 650
Linac passes 9 3 9 3
T1 (ps/GeV) 1567 299 435 83
� (deg) 7 6 25 22
�E (MeV) 22 50 283 647

with
2 sin

�
2
= −

√

T1U! tan� (43)
Therefore, to determine the phase of the RF that will satisfy

the emittance growth constraints, we solve the equation

�2 sin3 � = − 5
48
U2!4T 31 �
Δ�∕�

⟨J 2⟩
�2

(44)

The function on the left hand side reaches a maximum when
� ≈ 1.91 ≡ �0, and its value there is approximately 3.06.
Therefore, when the magnitude of the right hand side is greater
than 3.06, the emittance growth requirement cannot be met.
Note that this synchrotron phase advance is large enough that
there may be issues with the synchrotron bucket breaking up.

The next step is to choose parameters that meet the emit-
tance growth requiremetns. This can be done by solving for
T1, assuming that � = −�0:

T1 =

[

48
5
(Δ�∕�)�20 sin

3 �0
U2!4�(⟨J 2⟩∕�2)

]1∕3

(45)

From this, one can compute the RF phase and the energy
spread:

�E =
√

�
T1
tan

�0
2

(46)

� = tan−1
4 sin2(�0∕2)
T1U!

(47)

For a Gaussian distribution, these parameters are computed in
Table VI.

V. DROPLET ARC DESIGN II

T1 does not uniquely determine the arc design: it depends on
two parameters, no andL. One of these two much be chosen in
some rational fashion. To make the match from the linac to the
arc perform optimally, it is best to have the beta functions at
the end of the linac be similar to those at the end of the arc. For
a thin lens FODO cell with a full cell length L, the geometric
mean of the beta functions at the quadrupoles is

√

�D�F =
L
2
csc

�⊥
2

(48)

TABLE VII. Droplet arc parameters when the linac and arc have the
same geometric average of their beta functions at the points where
they meet.
� (mm) 1.5 1.5 70 70
!∕2� (MHz) 325 650 325 650
Linac passes 9 3 9 3
�⊥ end (deg.) 51 23 38 10
Cells per cavity 2 5 2 2
Linac cell length (m) 6.46 5.53 6.46 4.15
no 0 6 7 46
Decay loss (%) 8.8 5.3 17.4 20.7
L, first arc (m) 11.2 20.1 15.5 34.4
Total arc length (km) 4.3 3.3 24.0 32.5

where �⊥ is the betatron phase advance per cell. I will first
describe designs where this geometric mean is the same at the
end of the first linac pass and for the first droplet arc.
sin(�⊥∕2) is proportional to the particle momentum for

a given cell length and magnetic field gradients in the
quadrupoles. To take the most extreme parameters, assume
that betatron oscillations become unstable for particles with
energy E0−k�E , where E0 is the linac injection energy and kis the “physical aperture” factor from Table I. Then the phase
advance �⊥ at the end of the linac is given by

sin
�⊥
2
=
E0 − k�E
E0 + U

. (49)

Therefore the ratio of the linac cell length to the arc cell length
to keep the geometric product of the beta functions the same
is about

1
√

2

E0 + U
E0 − k�E

. (50)

This takes into account the �∕2 phase advance in the arc cells.
For a given T1, the number of cells increases as the arc cell

length increases. Therefore the total arc length and muon de-
cays increase with that cell length. If the geometric mean of
the beta functions is kept the same for the linac and the arc, this
means the linac cell length should be shorter to have the best
performance and lowest cost. I therefore use superconduct-
ing quadrupoles for focusing, with a maximum field of 4 T at
4.5� for a beam at the design energy and 25 cm of space on ei-
ther side of the quadrupoles. There will be one cavity between
each pair of quadrupoles, with the number of cells (less than
or equal to the maximum in Table II) chosen to give the lowest
amount of muon decay. The cell length of the linac should be
an integer number of RF wavelengths so the RF phasing works
for both muon signs.
The resulting designs are given in Table VII. Designs can be

constructed that have reasonable performance for the 1.5 mm
longitudinal emittance, but the results are unacceptable for the
70 mm longitudinal emittance: decay losses and the total arc
circumference are too high. For the 325 MHz case, the indi-
vudal arcs are of a moderate length, but the large number of
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TABLE VIII. Droplet arc parameters for a beam with a 70 mm lon-
gitudinal emittance with no beta function matching requirement be-
tween the arc and linac.
!∕2� (MHz) 325 325 650 650
Linac passes 9 9 3 3
Arc dipole field (T) 1.5 6.0 1.5 6.0
no 11 5 28 15
L, first arc (m) 5.43 3.57 5.34 3.44
Total arc length (km) 12.0 4.3 3.2 1.2
Decay loss (%) 12.3 9.1 6.2 5.3

them leads to an excessive circumference. For the 650 MHz
case, the very large energy spread leads to a very low betatron
phase advance at the end of the first linac pass, leading to a
very long cell length and large number of cells in the droplets
arcs. Because of this, despite the smaller number of arcs, the
650 MHz design looks significantly worse than the 325 MHz
design.

Therefore, to accelerate the 70 mm longitudinal emittance
with tolerable emittance growth, one will have to accept a beta
mismatch between the droplet arc cells and the adjacent linac
cells. This will require beta matching in the cells at the end of
the droplet, which may have some impact on the performance,
since it will be difficult to have the beta match be correct over
the entire energy spread in the beam. I will fix the maximum
fields in the arc magnets, considering warm (maximum dipole
fields of 1.5 T, maximum quadrupole field at 4.5 � of 1.0 T)
and superconducting (maximum dipole fields of 6.0 T, maxi-
mum quadrupole field at 4.5 � of 4.0 T) solutions. To find a
solution, I adjust no and L, keeping the dipole and quadrupole

fields at their maximum values, so that no takes the smallest
value that keeps T1 less than the value from Table VI. The
results are given in Table VIII.

VI. CONCLUSIONS

I have been able to find reasonable parameters for a dogbone
RLA that will accelerate a muon beam for both the Higgs fac-
tory and high energy collider parameters given in Table I. The
important longitudinal parameters are given in Table VI, and
approximate droplet arc parameters are given in Table VIII. A
650 MHz linac appears to be a better solution, except the large
energy spread in the beam is a cause for concern. Supercon-
ducting arcs appear to provide a more cost-effective solution
due to a significantly smaller number of magnets and total arc
length. However, the larger beta mismatch between the linacs
and the arcs and a desner switchyard may lead to a preference
for a warm magnet solution. A 325 MHz solution with su-
perconducting magnets is also acceptable, though switchyard
crowding may become a significant problem for that case.
If one only wishes to accelerate the beam for the Higgs fac-

tory in this machine, then the solutions from Table VII would
probably perform better since there is minimal betatron mis-
match between the arc and linac, and the magnet density at the
switchyard should be low. The 650 MHz solution would be
preferable in this case.
To reduce the energy spread for the collider emittance, one

could use a racetrack geometry instead of the dogbone geom-
etry. The racetrack geomtry has the additional advantage of
treating both charges equally with respect to beam loading.
I also expct that two accelerating stages instead of just one
would yield better designs.
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